Publications
This page contains all my publications; for more details, see my Google Scholar profile.
Published Papers
-
Aliaksandra Shysheya
,
Cristiana Diaconu
,
Federico Bergamin
,
Paris Perdikaris
,
José Miguel Hernández-Lobato
,
Richard E. Turner
,
Emile Mathieu
,
On conditional diffusion models for PDE simulations, in The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
-
Alexander Denker
,
Francisco Vargas
,
Shreyas Padhy
,
Kieran Didi
,
Simon Mathis
,
Vincent Dutordoir
,
Riccardo Barbano
,
Emile Mathieu
,
Urszula Julia Komorowska
,
Pietro Lio
,
DEFT: Efficient Fine-Tuning of Diffusion Models by Learning the Generalised h-transform. 2024.
-
Jason Yim
,
Andrew Campbell
,
Emile Mathieu
,
Andrew Y. K. Foong
,
Michael Gastegger
,
Jose Jimenez-Luna
,
Sarah Lewis
,
Victor Garcia Satorras
,
Bastiaan S. Veeling
,
Frank Noe
,
Regina Barzilay
,
Tommi Jaakkola
,
Improved motif-scaffolding with SE(3) flow matching, Transactions on Machine Learning Research, 2024.
-
Kieran Didi
,
Francisco Vargas
,
Simon V Mathis
,
Vincent Dutordoir
,
Emile Mathieu
,
Urszula J Komorowska
,
Pietro Lio
,
A framework for conditional diffusion modelling with applications in motif scaffolding for protein design. 2024.
-
Joseph L. Watson
,
David Juergens
,
Nathaniel R. Bennett
,
Brian L. Trippe
,
Jason Yim
,
Helen E. Eisenach
,
Woody Ahern
,
Andrew J. Borst
,
Robert J. Ragotte
,
Lukas F. Milles
,
Basile I. M. Wicky
,
Nikita Hanikel
,
Samuel J. Pellock
,
Alexis Courbet
,
William Sheffler
,
Jue Wang
,
Preetham Venkatesh
,
Isaac Sappington
,
Susana Vázquez Torres
,
Anna Lauko
,
Valentin De Bortoli
,
Emile Mathieu
,
Sergey Ovchinnikov
,
Regina Barzilay
,
Tommi S. Jaakkola
,
Frank DiMaio
,
Minkyung Baek
,
David Baker
,
De Novo Design of Protein Structure and Function with RFdiffusion, Nature, 1–3, Jul. 2023.
-
Ning Miao
,
Tom Rainforth
,
Emile Mathieu
,
Yann Dubois
,
Yee Whye Teh
,
Adam Foster
,
Hyunjik Kim
,
Learning Instance-Specific Augmentations by Capturing Local Invariances, in Proceedings of the 40th International Conference on Machine Learning, 2023.
-
Jason Yim
,
Brian L. Trippe
,
Valentin De Bortoli
,
Emile Mathieu
,
Arnaud Doucet
,
Regina Barzilay
,
Tommi Jaakkola
,
SE(3) Diffusion Model with Application to Protein Backbone Generation, in Proceedings of the 40th International Conference on Machine Learning, 2023.
-
Nic Fishman
,
Leo Klarner
,
Valentin De Bortoli
,
Emile Mathieu
,
Michael Hutchinson
,
Diffusion Models for Constrained Domains, Transactions on Machine Learning Research, 2023.
-
Nic Fishman
,
Leo Klarner
,
Emile Mathieu
,
Michael Hutchinson
,
Valentin De Bortoli
,
Metropolis Sampling for Constrained Diffusion Models, in Advances in Neural Information Processing Systems, 2023, vol. 36, 62296–62331.
-
Emile Mathieu
,
Vincent Dutordoir
,
Michael Hutchinson
,
Valentin De Bortoli
,
Yee Whye Teh
,
Richard Turner
,
Geometric Neural Diffusion Processes, in Advances in Neural Information Processing Systems, 2023, vol. 36, 53475–53507.
-
Laurence Midgley
,
Vincent Stimper
,
Javier Antorán
,
Emile Mathieu
,
Bernhard Schölkopf
,
José Miguel Hernández-Lobato
,
SE(3) Equivariant Augmented Coupling Flows, in Advances in Neural Information Processing Systems, 2023, vol. 36, 79200–79225.
-
Angus Phillips
,
Thomas Seror
,
Michael Hutchinson
,
Valentin De Bortoli
,
Arnaud Doucet
,
Emile Mathieu
,
Spectral Diffusion Processes, no. arXiv:2209.14125. arXiv, Nov-2022.
-
Ning Miao
,
Emile Mathieu
,
Siddharth N
,
Yee Whye Teh
,
Tom Rainforth
,
On Incorporating Inductive Biases into VAEs, in Tenth International Conference on Learning Representations, 2022.
-
James Thornton
,
Michael Hutchinson
,
Emile Mathieu
,
Valentin De Bortoli
,
Yee Whye Teh
,
Arnaud Doucet
,
Riemannian Diffusion Schrödinger Bridge, in ICML Workshop on Continuous Time Methods for Machine Learning, 2022.
-
Valentin De Bortoli
,
Emile Mathieu
,
Michael John Hutchinson
,
James Thornton
,
Yee Whye Teh
,
Arnaud Doucet
,
Riemannian Score-Based Generative Modelling, in Advances in Neural Information Processing Systems, 2022.
-
Rodrigo Oyanedel
,
Stefan Gelcich
,
Emile Mathieu
,
E. J. Milner-Gulland
,
A Dynamic Simulation Model to Support Reduction in Illegal Trade within Legal Wildlife Markets, Conservation Biology, Aug. 2021.
-
Emile Mathieu
,
Adam Foster
,
Yee Whye Teh
,
On Contrastive Representations of Stochastic Processes, in Advances in Neural Information Processing Systems 33, 2021.
-
Emile Mathieu
,
Maximilian Nickel
,
Riemannian Continuous Normalizing Flows, in Advances in Neural Information Processing Systems 33, 2020, 2503–2515.
-
Emile Mathieu
,
Charline Le Lan
,
Chris J. Maddison
,
Ryota Tomioka
,
Yee Whye Teh
,
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders, in Advances in Neural Information Processing Systems 32, 2019, 12565–12576.
-
Emile Mathieu
,
Tom Rainforth
,
N Siddharth
,
Yee Whye Teh
,
Disentangling Disentanglement in Variational Autoencoders, https://icml.cc/media/Slides/icml/2019/halla(12-11-00)-12-11-35-4811-disentangling_d.pdf, in Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA, 2019, vol. 97, 4402–4412.
-
Benjamin Bloem-Reddy
,
Adam Foster
,
Emile Mathieu
,
Yee Whye Teh
,
Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks, https://www.youtube.com/watch?v=0PlIFXBpIgU, in Conference on Uncertainty in Artificial Intelligence, 2018.
-
Benjamin Bloem-Reddy
,
Emile Mathieu
,
Adam Foster
,
Tom Rainforth
,
Hong Ge
,
María Lomelí
,
Zoubin Ghahramani
,
Yee Whye Teh
,
Sampling and inference for discrete random probability measures in probabilistic programs, in NIPS Workshop on Advances in Approximate Bayesian Inference, 2017.