. Ecole des Ponts
Policy Search ParisTech

A review

Charles Reizine, Emile Mathieu

January 17, 2017

Ecole des Ponts ParisTech

Problem Statement

Reinforcement Learning

Markov Decision Process

e State space x € X

Action space u € U

Transition dynamics P(ug41|xt, uy)

Reward function r(x¢, ug)

Initial state probabilities pio(x¢)

Learning

Adapting the policy 7(u|x)
Objective

Find 7* € arg max, J; with J, = E [Z;l rt}

Learning Paradigms

Value Function :

Estimate the value function V7 (x) = E,[R:|x; = x] or action-value
function Q™ (u, x) = E.[R:|x; = x, us = u].

Then compute the policy by action selection.

Limits

High dimensional or continuous problems.

Policy Search :

Employ a parametrize policy mg.

Iterate in the parameter space of the policy.
Fit large scale, continuous problems

Two approaches

o Model-based methods

o Model-free methods

Model-Free Policy Search

Model-Free Policy Search

Model-Free Policy Search

Use samples D = {(x{':]T, u{’;]T, rl[f]T) } L

.....

to directly update the policy .

Pseudo code

Algorithm 1 Model free policy search

1: while has not converged do

2 Explore: Generate trajectories 7] from current policy 7y

3: Evaluate: Assess quality of trajectory or actions

4 Update: Compute new policy mx41 from trajectories and evalua-
tions

5: end while

Exploration Strategies & Evaluation Strategies

Episode-based

Explore:
In parameter space at the beginning
of an episode: 8; ~ 7, (0)

e Search distribution 7, over
parameter space 6 € ©
o Deterministic control policy:

u = my(x)

Evaluate:

The quality of parameter 8; by the
accumulated reward:

R =T rn, D={6;,RN

Step-based

Explore:
In action space at each time step:
u; ~ mo(u|x;)

e Stochastic control policy

Evaluate:
The quality of state-action pairs
(xt[]7 ug) by rewards to come:

= 3 e a(Xh, up)

D:{ ut,Q}

Policy Update Strategies

Policy gradients methods
Expectation-maximization based methods

Information theoretical approaches

Policy Gradient

Optimize average return Jg by gradient ascent.

Compute gradient from samples

Vods = Vo / po(T)R(r)dT = / Vopo(T)R(T)dT

T

Ve do = V., /0 7 (6) /T po(T)R(+)dTd6 = /9 Voo (6) /T po(T)R(7)drdO

Update control policy parameter

Oiy1 =0k + Voo

or wii1 = wk + Vel

Finite Differences

Small perturbation
0, + 60 < 0,

Change of returns: R = R(8) + 56l1) — R(6))
Construct 66 = [6011, ..., 50" and 6R = [sRW, ... 6RIM] .

Gradient approximation

Using a first-order Taylor approximation and solving ngJg in the
least-square sense yields:

VED Jp = (507660) 607 6R

Likelihood-Ratio Policy Gradients

Injecting the likelihood ratio trick Vpg(y) = pe(y)V log pe(y) into VeJg
gives:

Voo — / Po(y)V 10g po(y)R(T)dT = Epy(r) [V log po(T)R(7)]

12

N
1 i i
=3 Ve log po(rR(r)
i=1
For a stochastic policy: pg(7) = p(x1) H;l p(xei1|x:)mo(ue| X, t)
Hence Vg log pg(T) = Z;}l Vo log mg (ug|x¢, t)
The REINFORCE algorithm uses the policy gradient:

N T-1

1 .
Ve'do = 5 2. > Valogmo(ufl|x{1, t)R(r1)

i=1 t=0

Natural Policy Gradient

Objective: Achieve a more stable behaviour of the learning process.

Idea: Maintain a limited step-width in the trajectory distribution space,
enforced by the constraint:

KL(po(T)||pos50(T)) =~ 007 Fod0 < €

Optimization program:

60NC = arg max 60750Y¢ st. 50T Fpi0 < e

Solution: §0N¢ « F,'66Y¢

Natural policy gradient:

VyCle = Fy'Vele

Guided Policy Search

Issue: New trajectories 7l are required at each gradient step to
compute: E[VgJg] ~ % Zf\’zl Vo log PQ(T[i])R(T[i])

Importance Sampling: E[Jg] ~ ﬁ E,N:l Tr:(g_‘r[,[]f])) R(=!1), with
1]
Tl ~ q.

g can be a previous policy, or a guiding distribution constructed with
differential dynamic programming (DDP).

LQR algorithm: lteratively optimize a trajectory, with linear reward
and quadratic dynamics approximations.

f and r estimated by finite differences.
Yields a deterministic policy: u; = g(x¢).

Stochastic policy: q(us|x;) = N (ue|g(x:), L)

10

Expectation Maximization for policy search

Observed variable: Binary reward event given by
p(R = 1|7) = p(R|T), defined from a transformation of R(7).

Latent variable: Trajectory T.

We want to find the maximum solution 8* for the log marginal-likelihood:

|ngg(R)=/p(R|T)pg(T)dT

-

M-Step: Yields closed form solution for parameters, for most common
policies.

E-Step: Cannot be computed exactly: approximations are needed.

p(RIT) pe(T) @

Figure 1: Graphical model for inference-based policy search.

11

E-Step approximation

Monte-Carlo EM-based Policy Search
Sample based approximation for the auxiliary distribution g:

q(r) = p(7|R) o p(R|T)pe: (T)

Since Tl ~ pg/(7): q(7!1) o p(R|T!T)
Expected complete log-likelihood:
Q(0)~ > p(R|r)log pe(rM)
Tll~pgr ()
Variational Inference-based Policy Search

Use a parametrized auxiliary distribution gg.

8 e argmin KL(gs(r)]p(RI7)po(r)

[i]
: [i] gs(t")
(S arg min T |0 ——
gmin > as(7) & b(R[1)pg (1) 1

il

Information Theoretical Approaches

Main idea:
The trajectory distribution after the policy update should not be far from

the trajectory distribution before the policy update.
Relative Entropy Policy Search (REPS):
maximize /7T(0)R(0)d9

, ()
subject to 7(0)lo <e
J (0) log 20) =

/w(G)dO =1

Solution via Lagrangian: 7(0) x q(0) eXp(RTB))'

13

Model-based Policy Learning

General Setup 1

Objective:
-

7, € arg maxJy = arg maxz:'y"bIE[r(xt7 u)|me], v €10,1] (1)

& t=1

Assumption:

Xep1 = F(Xe,) + w

14

General Setup 2

Hypothesis :
The model is easier to learn than the policy.

Interest of this approach :
Enable complex policy learning using computer simulation.
Pipeline :

e Generate trajectories
e Use measurements to update model
e Use model to update policy

e Use policy to return to first step

15

Learning a model : Locally Weighted Bayesian Regression

Locally:
Xep1 = [Xe, u]] ")+ w
Using Bayes' theorem:
E[|X.y] = SXBQy
cov(|X,y) =S — STXBQ'BX'S
where X = [X, U], @ = BXTSXB+ X, and B = diag(b;).
Finally :

Hl [Xt;ut] E[U"X y]
EiJrl = [xta ut] TCOV[@/}‘X,y] [Xt7 ut]

16

Learning a model : Gaussian Process Regression

Gaussian prior characteristics :
m=20

U 1, P P
k(Xp, Xq) = U%eXP(*i(Xp - Xq)T/\ 1(Xp —Xq)) + 6Pq03v

Prediction :

X1 is Gaussian distributed :
P(Xer1|xe, ur) = N(Xt+1|uf+17)

where
M1 = Eelf(xe, ur)] = kK ly
i = vare[f(xe, ur)] = ki — kI K 'k,
with ki 1= k()?7}t); kysx = k(X¢, X¢) and K is the kernel matrix with
entries Kjj = k(X;, X;).

17

Quality of a Policy given a model 1

How to estimate :

Jo = 3" Elr(x,)lmo]

Approach based on sampling :

PEGASUS (Policy Evaluation-of-Goodness And Search Using Scenarios)
Deterministic approaches :

Assumption :

p(xe, ue) = N([xe, ue]| ", 23)

Problem to solve :

p(Xeq1) = /// P(Xeq1|Xe, u)p(Xe, u)dx,duydwy

where x; 1 = f(x¢, u) + w with f a non parametric functions.

Hard to solve

18

Quality of a Policy given a model 2

Hypothesis

N(Xer1lp5 41, B11)

How to estimate the predicted distribution parameters?

Moment Matching

-1 05 0 05 1
1

¢ o 2

K)

o 0 !

Figure 2: Moment Matching process

Best unimodal distribution

Hard to compute 19

Quality of a Policy given a model 3

Approximations

Linearization Sigma Points
Locally approximate f around Approximate p(x;, u;) by a finite
(p5, pth). number of points.

Figure 3: Linearisation Process Figure 4: Sigma Point Process

20

Policy Update

No gradient information
Heuristics such as Nelder-Mead (simplex) or hill-climbing methods
(simulated annealing) can be used.

With gradient information
Gradient descent or other popular optimization approach.

How to estimate dJy(6)/dy?

Estimation using finite difference

21

Policy Update

Analytic policy gradient

Advantage
Exact computation of the gradient.

Deterministic model

Xt4+1 = f(xta Ur) = f(xt,mg(xt,ﬂ)).

Jo = nytr(xt)

do _ e _ N Or(xe) dxe
40 zt:” dr(xe) = > 7 Ox, do

t

Using the chain-rule we find that:
dx; dx;_1 Ox: du;_1 Ox;
d0 ~ d6 Ox._; dO ou_,
Stochastic model

Same with E[r(x;)] using p(x;) is known.
22

Conclusion

Thank you for your attention !

Questions?

	Problem Statement
	Model-Free Policy Search
	Model-based Policy Learning
	Conclusion

