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Problem Statement



Reinforcement Learning

Markov Decision Process

• State space x ∈ X
• Action space u ∈ U
• Transition dynamics P(ut+1|xt ,ut)

• Reward function r(xt ,ut)

• Initial state probabilities µo(xt)

Learning

Adapting the policy π(u|x)

Objective

Find π? ∈ arg maxπ Jπ with Jπ = E
[∑T

t=1 rt
]
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Learning Paradigms

Value Function :

Estimate the value function V π(x) = Eπ[Rt |xt = x ] or action-value

function Qπ(u, x) = Eπ[Rt |xt = x ,ut = u].

Then compute the policy by action selection.

Limits

High dimensional or continuous problems.

Policy Search :

Employ a parametrize policy πθ.

Iterate in the parameter space of the policy.

Fit large scale, continuous problems

Two approaches

• Model-based methods

• Model-free methods
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Model-Free Policy Search



Model-Free Policy Search

Model-Free Policy Search

Use samples D =
{(

x [i ]
1:T ,u

[i ]
1:T , r

[i ]
1:T

)}
i=1,...,N

to directly update the policy π.

Pseudo code

Algorithm 1 Model free policy search

1: while has not converged do

2: Explore: Generate trajectories τ [i ] from current policy πk
3: Evaluate: Assess quality of trajectory or actions

4: Update: Compute new policy πk+1 from trajectories and evalua-

tions

5: end while

3



Exploration Strategies & Evaluation Strategies

Episode-based

Explore:

In parameter space at the beginning

of an episode: θi ∼ πω(θ)

• Search distribution πω over

parameter space θ ∈ Θ

• Deterministic control policy:

u = πθ(x)

Evaluate:

The quality of parameter θi by the

accumulated reward:

R [i ] =
∑T

t=1 rt , D =
{
θi ,R

[i ]
}

Step-based

Explore:

In action space at each time step:

ut ∼ πθ(u|xt)

• Stochastic control policy

Evaluate:

The quality of state-action pairs

(x [i ]
t ,u

[i ]
t ) by rewards to come:

Q
[i ]
t =

∑T
h=t rh(xh,uh)

D =
{
x [i ]
t ,u

[i ]
t ,Q

[i ]
t

}
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Policy Update Strategies

Policy gradients methods

Expectation-maximization based methods

Information theoretical approaches
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Policy Gradient

Optimize average return Jθ by gradient ascent.

Compute gradient from samples

∇θJθ = ∇θ
∫
τ

pθ(τ )R(τ )dτ =

∫
τ

∇θpθ(τ )R(τ )dτ

∇ωJω = ∇ω
∫
θ

πω(θ)

∫
τ

pθ(τ )R(τ )dτdθ =

∫
θ

∇ωπω(θ)

∫
τ

pθ(τ )R(τ )dτdθ

Update control policy parameter

θk+1 = θk + αk∇θJθ

or ωk+1 = ωk + αk∇ωJω
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Finite Differences

Small perturbation

θk + δθ ← θk

Change of returns: δR [i ] = R(θk + δθ[i ])− R(θk)

Construct δθ = [δθ[1], . . . , δθ[N]]
T

and δR = [δR [1], . . . , δR [N]]
T

.

Gradient approximation

Using a first-order Taylor approximation and solving ∇FD
θ Jθ in the

least-square sense yields:

∇FD
θ Jθ = (δθT δθ)

−1
δθT δR
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Likelihood-Ratio Policy Gradients

Injecting the likelihood ratio trick ∇pθ(y) = pθ(y)∇ log pθ(y) into ∇θJθ
gives:

∇θJθ =

∫
τ

pθ(y)∇ log pθ(y)R(τ )dτ = Epθ(τ )[∇θ log pθ(τ )R(τ )]

' 1

N

N∑
i=1

∇θ log pθ(τ [i ])R(τ [i ])

For a stochastic policy: pθ(τ ) = p(x1)
∏T

t=1 p(xt+1|xt)πθ(ut |xt , t)

Hence ∇θ log pθ(τ ) =
∑T−1

t=0 ∇θ log πθ(ut |xt , t)

The REINFORCE algorithm uses the policy gradient:

∇RF
θ Jθ =

1

N

N∑
i=1

T−1∑
t=0

∇θ log πθ(u [i ]
t |x

[i ]
t , t)R(τ [i ])
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Natural Policy Gradient

Objective: Achieve a more stable behaviour of the learning process.

Idea: Maintain a limited step-width in the trajectory distribution space,

enforced by the constraint:

KL(pθ(τ )||pθ+δθ(τ )) ' δθTFθδθ ≤ ε

Optimization program:

δθNG = arg max
δθ

δθT δθVG s.t. δθTFθδθ ≤ ε

Solution: δθNG ∝ F−1θ δθVG

Natural policy gradient:

∇NG
θ Jθ = F−1θ ∇θJθ
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Guided Policy Search

Issue: New trajectories τ [i ] are required at each gradient step to

compute: E[∇θJθ] ' 1
N

∑N
i=1∇θ log pθ(τ [i ])R(τ [i ])

Importance Sampling: E[Jθ] ' 1
Z(θ)

∑N
i=1

πθ(τ
[i ])

q(τ [i ])
R(τ [i ]), with

τ [i ] ∼ q.

q can be a previous policy, or a guiding distribution constructed with

differential dynamic programming (DDP).

LQR algorithm: Iteratively optimize a trajectory, with linear reward

and quadratic dynamics approximations.

f and r estimated by finite differences.

Yields a deterministic policy: ut = g(xt).

Stochastic policy: q(ut |xt) = N (ut |g(xt),Σ)
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Expectation Maximization for policy search

Observed variable: Binary reward event given by

p(R = 1|τ ) = p(R|τ ), defined from a transformation of R(τ ).

Latent variable: Trajectory τ .

We want to find the maximum solution θ? for the log marginal-likelihood:

log pθ(R) =

∫
τ

p(R|τ )pθ(τ )dτ

M-Step: Yields closed form solution for parameters, for most common

policies.

E-Step: Cannot be computed exactly: approximations are needed.

Figure 1: Graphical model for inference-based policy search.
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E-Step approximation

Monte-Carlo EM-based Policy Search

Sample based approximation for the auxiliary distribution q:

q(τ ) ' p(τ |R) ∝ p(R|τ )pθ′(τ )

Since τ [i ] ∼ pθ′(τ ): q(τ [i ]) ∝ p(R|τ [i ])

Expected complete log-likelihood:

Qθ(θ′) '
∑

τ [i ]∼pθ′ (τ )

p(R|τ [i ]) log pθ(τ [i ])

Variational Inference-based Policy Search

Use a parametrized auxiliary distribution qβ .

β ∈ arg min
β

KL(qβ(τ )||p(R|τ )pθ(τ ))

∈ arg min
β

∑
τ [i ]

qβ(τ [i ]) log
qβ(τ [i ])

p(R|τ [i ])pθ(τ [i ]) 12



Information Theoretical Approaches

Main idea:

The trajectory distribution after the policy update should not be far from

the trajectory distribution before the policy update.

Relative Entropy Policy Search (REPS):

maximize
π

∫
π(θ)R(θ)dθ

subject to π(θ) log
π(θ)

q(θ)
≤ ε∫

π(θ)dθ = 1

Solution via Lagrangian: π(θ) ∝ q(θ) exp(R(θ)
η ).
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Model-based Policy Learning



General Setup 1

Objective:

π∗θ ∈ arg maxJθ
π

= arg max
π

T∑
t=1

γtE[r(xt ,ut)|πθ], γ ∈ [0, 1] (1)

Assumption:

xt+1 = f (xt ,ut) + w
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General Setup 2

Hypothesis :

The model is easier to learn than the policy.

Interest of this approach :

Enable complex policy learning using computer simulation.

Pipeline :

• Generate trajectories

• Use measurements to update model

• Use model to update policy

• Use policy to return to first step
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Learning a model : Locally Weighted Bayesian Regression

Locally:

xt+1 = [xt ,ut ]
Tψ + w

Using Bayes’ theorem:

E[ψ|X̃ , y ] = SX̃BΩ−1y

cov(ψ|X̃ , y) = S − ST X̃BΩ−1BX̃TS

where X̃ = [X ,U], Ω = BX̃TSX̃B + Σw and B = diag(bi ).

Finally :

µt+1
x = [xt ,ut ]

TE[ψ|X̃ , y ]

Σt+1
x = [xt ,ut ]

T cov[ψ|X̃ , y ][xt ,ut ]

16



Learning a model : Gaussian Process Regression

Gaussian prior characteristics :

m = 0

k(x̃p, x̃q) = σ2
f exp(−1

2
(x̃p − x̃q)TΛ−1(x̃p − x̃q)) + δpqσ

2
w

Prediction :

xt+1 is Gaussian distributed :

p(xt+1|xt ,ut) = N (xt+1|µx
t+1,Σ

x
t+1)

where

µx
t+1 = Ef [f (xt ,ut)] = kT

∗ K−1y

Σx
t+1 = var f [f (xt ,ut)] = k∗∗ − kT

∗ K−1k∗

with k∗ := k(X̃ , x̃t), k∗∗ = k(x̃t , x̃t) and K is the kernel matrix with

entries Kij = k(x̃i , x̃j).
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Quality of a Policy given a model 1

How to estimate :

Jθ =
T∑
t=0

γtE[r(xt)|πθ]

Approach based on sampling :

PEGASUS (Policy Evaluation-of-Goodness And Search Using Scenarios)

Deterministic approaches :

Assumption :

p(xt ,ut) = N ([xt ,ut ]|µxu
t ,Σ

xu
t )

Problem to solve :

p(xt+1) =

∫∫∫
p(xt+1|xt ,ut)p(xt ,ut)dxtdutdwt

where xt+1 = f (xt ,ut) + w with f a non parametric functions.

Hard to solve
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Quality of a Policy given a model 2

Hypothesis

N (xt+1|µx
t+1,Σ

x
t+1)

How to estimate the predicted distribution parameters?

Moment Matching

Figure 2: Moment Matching process

Best unimodal distribution

Hard to compute 19



Quality of a Policy given a model 3

Approximations

Linearization

Locally approximate f around

(µx
t ,µ

u
t ).

Figure 3: Linearisation Process

Sigma Points

Approximate p(xt ,ut) by a finite

number of points.

Figure 4: Sigma Point Process
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Policy Update

No gradient information

Heuristics such as Nelder-Mead (simplex) or hill-climbing methods

(simulated annealing) can be used.

With gradient information

Gradient descent or other popular optimization approach.

How to estimate dJθ(θ)/dθ?

Estimation using finite difference
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Policy Update

Analytic policy gradient

Advantage

Exact computation of the gradient.

Deterministic model

xt+1 = f (xt ,ut) = f (xt , πθ(xt ,θ)).

Jθ =
∑
t

γtr(xt)

dJθ
dθ

=
∑
t

γtdr(xt) =
∑
t

γt
∂r(xt)
∂xt

dxt
dθ

Using the chain-rule we find that:

dxt
dθ

=
dxt−1

dθ

∂xt
∂xt−1

+
dut−1

dθ

∂xt
∂ut−1

Stochastic model

Same with E[r(xt)] using p̃(xt) is known.
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Conclusion



Thank you for your attention !

Questions?
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