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Abstract

A lot of applications require to optimize black-box, noisy function that is expen-
sive to evaluate. This task can be formulated as a multi-armed bandit problem,
where the reward function is sampled from a Gaussian Process (GP) or has low
RKHS norm. This setting was first studied by Srinivas et al. [9], where the authors
proposed GP-UCB, a UCB-like algorithm. We propose a Thompson sampling al-
gorithm adapted to this setting.

1 Introduction

1.1 Problem Statement

The problem we consider is the sequential optimization of an unknown reward function f : D → R.
At each round t, we choose a point xt ∈ D and get to observe the function value perturbed by noise:
yt = f(xt) + εt. Our goal is to perform as well as x? = arg maxx∈D f(x), which is maximizing
the sum of rewards

∑T
t f(xt).

In bandit settings, the natural performance metric is the cumulative regret, which is the loss in reward
due to not knowing f ’s maximum. Formally, the cumulative regret RT after T rounds is the sum of
instantaneous regret: RT =

∑T
t rt, with rt = f(x?)− f(xt).

1.2 Related work

The work of Srinivas et al. [9] generalizes stochastic linear optimization in a bandit setting, where
the unknown function comes from a finite-dimension linear space. For the linear setting, Dani et al.
[4] gave a near-complete characterization which explicitly depends on the dimensionality of the
space.

However, in the GP setting, the challenge is to characterize complexity in a different manner
since GPs are nonlinear random functions, and in some way, live in an infinite-dimensional lin-
ear space. Srinivas et al. [9] succeeded in bounding cumulative regret for GP-UCB in terms of
the information gain I(yA; fA) = 1

2 log |I + σ−2KA| (for a GP), with A = {x1, . . . ,xT } and
KA = [k(x,x′)]x,x′∈A. They proved these bounds for reward functions which are either sampled
from a GP, or have low RKHS norm. Then they also bounded the information gain for several
popular class of kernels, and established sublinear regret bounds for GP optimization.

There is an extensive literature about GP optimization. Several heuristics for trading off exploration
and exploitation have been proposed to tackle GP optimization: such as Expected Improvement
(Mockus et al. [7]) and Most Probable Improvement (Mockus [6]).
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2 Gaussian Processes

2.1 Overview

Brochu et al. [3] provides a comprehensive review of and motivation for Bayesian optimization using
GPs. This review is a nice way to get familiar with GPs.

GP can be seen as an extension of the multivariate Gaussian distribution (as this distribution is a
generalization of the univariate Gaussian) to an infinite-dimension distribution for which any finite
combination of dimensions will be a Gaussian distribution. In this manner, a GP is a distribution
over functions, completely specified by a mean function µ and a covariance function k: ∀x ∈ D

f(x) ∼ GP (µ(x), k(x,x′))

Common choices of covariance functions are:

• Finite dimensional linear: k(x,x′) = xTx′

• Squared Exponential kernel: k(x,x′) = exp{−(2l2)−1‖x− x′‖2}
• Matern kernel: k(x,x′) = (21−ν/Γ(ν))rνBν(r), r = (

√
2ν/l) ‖x− x′‖

2.2 Gaussian Processes reward functions

Gaussian Processes (Rasmussen and Williams [8]) allow smoothness assumptions about the reward
function f to be encoded through the choice of kernel in a flexible non parametric way.

Here, the reward function f can be assumed to come from a GP, and perturbed with gaussian noise:
y = f(x)+ε, with ε ∼ N (0, σ2) and f ∼GP(0d, k(·, ·)). Hence y = (f+ε) ∼GP(0d, k(·, ·)+σ2).
The reward can also be assumed to have low RKHS norm.

Either way, algorithms (GP-UCB and GP-TS) uses a GP(0d, k(·, ·)) as a prior distribution over f . A
major advantage of working with GPs is the existence of simple analytic formulae for the mean and
the covariance of the posterior distribution.

Indeed, for a noisy sample yt = [y1, . . . , yT ]T at points AT = {x1, . . . ,xT }, with yt = f(xt) + εt
(with i.i.d. εt ∼ N (0, σ2)), the posterior over f is still a GP distribution. The mean and variance of
this posterior GP distribution are:

• µt = kt−1(x)T (Kt−1 + σ2Id)
−1
yt

• kt = k(x,x′)− kt−1(x)T (Kt−1 + σ2Id)
−1
kt−1(x′)

• σ2
t = kt(x,x)

with kt(x) = [k(x1,x), . . . , k(xT ,x)]T and KT = [k(x,x′)]x,x′∈AT
.

3 Bandit’s Algorithms

3.1 GP-UCB

Srinivas et al. [9] introduces an upper-confidence based algorithm named Gaussian Process-Upper
Confidence Bound (GP-UCB) which is detailed in Algorithm 1. At each time step t, it chooses

xt = arg max
x∈D

µt−1(x) +
√
βtσt−1(x)

This choice implicitly negotiates the exploration-exploitation trade-off. It can be interpreted as
greedily selecting points x such that f(x) should be a reasonable upper bound on f(x?). The
exploration part σt−1(x), can be derived from an experimental design approach, with the notion of
information gain.

This selection rule is also motivated by the UCB algorithm for the classical multi-armed bandit
problem (Auer [2], Kocsis and Szepesvári [5]).
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Algorithm 1 GP-UCB

Require: k
1: µ← 0d
2: for t← 1 to T do
3: βt ← 2 log(|D| t2π2/6δ)
4: Choose at ← argmaxi µt−1 +

√
βtσt−1

5: Observe yt = f(xt) + εt
6: µt = kt−1(x)T (Kt−1 + σ2Id)

−1
yt

7: kt = k(x,x′)− kt−1(x)T (Kt−1 + σ2Id)
−1
kt−1(x′)

8: σ2
t = kt(x,x)

9: end for

3.2 GP-TS

Thompson Sampling (TS) is one of the earliest heuristics for multi-armed bandit problems. The
first version of this Bayesian heuristic dates to Thompson [10]. It is a member of the family of
randomized probability matching algorithms.

The main idea is to assume a prior on parameters θ of the reward function and to update these
parameters by computing the posterior distribution P (θ|D1:t) after observing a reward. At each
time step t, the algorithm plays an arm according to its posterior probability of being the best arm.

A generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit
problem with linear pay-off functions is given by Agrawal and Goyal [1].

We propose a generalization of Thompson Sampling algorithm for the stochastic multi-armed bandit
problem with reward functions sampled from GP. In this setting, the elements of Thompson sampling
are as follows:

• The set Θ of parameters θ of the distribution of f is the set of tuples {µ(·), k(·, ·)}, with
µ : D → R and k : D ×D → R.

• The prior distribution P (θ) on those parameters is a gaussian process: f ∼
GP(µ0(·), k0(·, ·)). Without loss of generality1, we assume µ0 = 0d.
• We observe triplets D = {x; y}t.
• At each step t, the reward yt comes from yt = f(xt) + ε, with ε ∼ N (0, σ2). Thus

(f + ε) ∼ GP(µ(·), k(·, ·) + σ2)

Consequently, the likelihood function is

P (y|θ,x) =
1√

2π(σ2
t + σ2)

exp

{
− (x− µt)2

2(σ2
t + σ2)

}

• The posterior distribution P (θ|D1:t) ∝ P (D1:t|θ)P (θ) yields the following update on
(functions) parameters {µ(·), k(·, ·)}:

– µt = kt−1(x)T (Kt−1 + σ2Id)
−1
yt

– kt = k(x,x′)− kt−1(x)T (Kt−1 + σ2Id)
−1
kt−1(x′).

The proposed GP-TS algorithm is summed up in pseudo-code in Algorithm 2.

3.3 Kernel learning

Once a parametrized kernel has been selected for the GP prior over f , one need to choose its param-
eters. For a squared exponential kernel k(x,x′) = exp{−(2l2)−1‖x− x′‖2} , the lengthscale l is a
parameter to be tuned.

1According to Rasmussen and Williams [8]
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Algorithm 2 GP-TS

Require: k
1: µ← 0d
2: for t← 1 to T do
3: Sample ft ∼ GP(µt,Kt)
4: Choose at ← argmaxa ft(xa,t)
5: Observe yt = f(xt) + εt
6: µt = kt−1(x)T (Kt−1 + σ2Id)

−1
yt

7: kt = k(x,x′)− kt−1(x)T (Kt−1 + σ2Id)
−1
kt−1(x′)

8: σ2
t = kt(x,x)

9: end for

A classical way to do so is to compute the log likelihood and to find parameters which maximizes
it. These parameters are then called maximum likelihood estimators (MLE). For the squared expo-
nential kernel, because yt = the log likelihood is the following:

N (y|0,K) = (2π)
−n/2|K + σ2I|−1/2 exp{−yT (K + σ2I)

−1
y}

with y = [y1, . . . , yT ]T and K the positive definite kernel matrix [k(x,x′)]x,x′∈AT
. This MLE

problem can then be formulated as the following otpimization problem:

l? ∈ arg minE(l)

with E(l) =
1

2
log |K + σ2I|+ yT (K + σ2I)

−1
y

2
∝ − logN (y|0,K)

4 Experiments

4.1 Compared methods

We compare performances between GP-UCB, GP-TS and two naives methods which choose points
of maximum mean or variance only, both on synthetic and real sensor network data.

Everything needed to run the experiments is available online at https://github.com/
emilemathieu/Project_GP-bandits. There are temperature and trafic data, but also the
Matlab code needed to run the following experiments.

4.2 Synthetic data

For synthetic data, we use the same procedure and parameters as in [9]. Hence, we sample random
functions from a GP with a squared exponential kernel with lengthscale parameter l = 0.2. The
sampling noise variance σ2 was set to 0.025. Our decision set D = [0, 1] is uniformly discretized
into 1000 points.

First, we learn the lengthscale of the squared exponential kernel with the method described in the
Kernel Learning subsection. We discretize the lengthscale space, compute E(l) for each lengthscale
l and return the lengthscale l which minimizesE(l)). These valuesE(l) are plotted in blue in Figure
1a, and the best lengthscale l? is represented by a vertical red dashed line.

Then, we run each algorithm for T = 100 iterations with δ = 0.1 and l = l?, averaging over 150
trials (samples from the kernel). We follow the choice of βt as recommended by Theorem 1 in [9],
which is βt = 2 log(|D|t2π2/6δ). Obtained results are shown in Figure 1b.
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(a) Kernel’s lengthscale learning
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(b) Performances on synthetic data

Figure 1: Comparison of performances: GP-UCB, TS-UCB and 2 naive heuristics on synthetic data
(b). Log likelihood for different values of the squared exponential kernel’s lengthscale (a).

4.3 Real data

4.3.1 Temperature data

Such as in Srinivas et al. [9], we use temperature data collected from 45 sensors deployed at Intel
Research Berkeley 2 during a month at one hour intervals.

Indeed, we might want to find locations of highest temperature in a building by sequentially ac-
tivating sensors in a spatial network and regressing on their measurements. In such a context, D
consists of all sensor locations, f(x) is the temperature at x, and sensor accuracy is quantified by
the noise variance. Each activation draws battery power, so we want to sample from as few sensors
as possible.

We take the first two-thirds of the dataset to compute the empirical covariance of the sensor mesures,
and use it as the kernel matrix.The functions f for optimization are taken from the remaining third
of the data set.

We take as parameters T = 45, σ2 = 5, δ = 0.1. Results are averaged over 187 runs. Mean
averaged regrets are shown Figure 2a.

4.3.2 Trafic data

We also use data from trafic sensors deployed along the highway 5 South in San Diego 3. The
goal was to find the point of minimum speed in order to identify the most congested portion of
the highway. We used trafic speed data from 48 sensors for 3 days (24/12/2016, 25/12/2016 and
03/01/2017) from 6 AM to 11 AM (local time), with 1 minute interval between each measure.

Again, the first two third of the dataset is used to compute the empirical covariance for the kernel
matrix, and we test algorithms on the last third.

We take as parameters T = 51, σ2 = 4.78, δ = 0.1. Results are averaged over 360 runs. Mean
averaged regrets are shown Figure 2b.

2This dataset and related information can be found at http://db.csail.mit.edu/labdata/labdata.html. Data
preprocessing is needed so as to filter sensors with no missing data and to keep only one point by sensor each
hour during a month.

3We wrote and scheduled a Python job which downloads every minutes data from the following webpage
http://www.dot.ca.gov/dist11/d11tmc/sdmap/showmap.php?route=sb5
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(a) Temperature data
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(b) Trafic data

Figure 2: Comparison of performances: GP-UCB, TS-UCB and 2 naive heuristics on temperature
data (a) and trafic data (b).

4.4 Analysis

On Figures 1b and 2, one can see that GP-TS slightly outperforms GP-UCB on both synthetic data
and real data. Naive heuristics which choose points with the highest variance or the highest mean
have clearly and hopefully worse performances.

5 Conclusion

We have shown that a Thompson sampling algorithm for the MAB problem where the payoff func-
tion is sampled from a GP or has low RKHS norm, can have better performances than GP-UCB.
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