
Hamiltonian Monte Carlo methods

A Riemannian geometry perspective

Emile Mathieu, Kimia Nadjahi

April 11, 2017

Ecole des Ponts ParisTech



Problem Statement



Problem Statement

Intractable density:

p(β) = p̃(β)/
∫
p̃(β)dβ

Metropolis-Hastings:

• Define an ergodic Markov process with stationary distribution p(β).

• Transitions β 7→ β∗ proposed with density q(β∗|β) accepted with

probability

α(β,β∗) = min

{
1,

p̃(β∗)q(β|β∗)
p̃(β)q(β∗|β)

}

What proposal distribution q ?

Typically, random walk: q(β∗|β) = N (β∗|β,Λ)

Low ‖Λ‖

High acceptance rate

Highly correlated samples

High ‖Λ‖

Low acceptance rate

Not so many correlated samples 1



Hamiltonian Monte Carlo



Hamiltonian Monte Carlo (I)

Goal:

Make large transitions accepted with high probability.

How to:

• Independent auxiliary variable: p ∼ N (p|0,M)

• Joint density: p(β,p) = p(β)p(p) = p(β)N (p|0,M)

• The negative joint log-probability is (with L(β) = log{p(β)})

H(β,p) = −L(β)︸ ︷︷ ︸
potential energy

+
1

2
log{(2π)D |M |}+

1

2
pTM−1p︸ ︷︷ ︸

kinetic energy

(1)

where L(β) = log{p(β)}
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Hamiltonian Monte Carlo (II)

• Hamilton’s equations:

dβ

dτ
=
∂H
∂p

= M−1p,
dp
dτ

= −∂H
∂β

= ∇βL(β) (2)

• Numerical integrator (Stormer-Verlet or leapfrog):

pτ+
ε
2 = pτ +

ε

2
∇βL{βτ} (3)

βτ+ε = βτ + εM−1pτ+
ε
2 (4)

pτ+ε = pτ+
ε
2 +

ε

2
∇βL{βτ+ε} (5)

• Acceptance probability: min(1, exp{−H(β∗,p∗) + H(β,p)})

Hyperparameters:

• Step size ε and number of integration steps: via acceptance rate

• Yet, choice of mass matrix M is critical.
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Geometric concepts

Goal:

Automatically determine M at each step.

Fisher-Rao metric:

Distance between parametrized density functions

KL(p(y ;β)||p(y ;β + δβ)) ' δβTG(β)δβ

where G(β) = −Ey |β

[
∂2

∂β2 log{p(y |β)}
]

Fisher information matrix G(β) is p.d. metric defining a Riemann

manifold.

General metric tensor

With a Bayesian perspective:

G(β) = −Ey |β

[
∂2

∂β2
log{p(y ,β)}

]
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Riemann manifold Hamiltonian

Monte Carlo



Riemann manifold Hamiltonian Monte Carlo (I)

• The Hamiltonian is

H(β,p) = −L(β) +
1

2
log{(2π)D |G(β)|}+

1

2
pTG(β)−1p (6)

• Marginal density:

p(β) ∝
∫

exp{−H(β,p)}dp = exp{L(β)}

• Joint density: p(β,p) = p(β)p(p|β) = p(β)N (p|0,G(β))

• Hamilton’s equations:

dβi
dτ

=
∂H
∂pi

= {G(β)−1p}i (7)

dpi
dτ

= −∂H
∂βi

=
∂L(β)

∂βi
− 1

2
tr

{
G(β)−1

∂G(β)

∂βi

}
+

1

2
pTG(β)−1

∂G(β)

∂βi
G(β)−1p (8)
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Riemann manifold Hamiltonian Monte Carlo (II)

Numerical integrator (generalized leapfrog):

pτ+
ε
2 = pτ − ε

2
∇βH

{
βτ ,pτ+ε/2

}
(9)

βτ+ε = βτ +
ε

2

[
∇pH

{
βτ ,pτ+

ε
2

}
+∇pH

{
βτ+ε,pτ+

ε
2

}]
(10)

pτ+ε = pτ+
ε
2 − ε

2
∇βH

{
βτ+ε,pτ+

ε
2

}
(11)

Acceptance probability:

min(1, exp{−H(β∗,p∗) + H(β,p)})
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Application: Bayesian logistic

regression



Bayesian logistic regression (BLR)

Probabilistic model

• Likelihood:

p(y = 1|X ) = η(XTβ)

with η : x 7→ (1 + e−x)−1

• Prior: β ∼ N (0, αI )

• Metric tensor:

G (β) = XTΛX + α−1I

with Λi,i = η(βTXT
n,·){1− η(βTXT

n,·)}

Figure 1: DAG for the Bayesian logistic regression. 7



Iterative Weighted Least Squares (IWLS)

• MLE of BLR obtained with Newton-Raphson method:

β̂(t) = ((αI )−1 + XTΛX )−1(XTΛỹ(β̂(t−1)))

Σ̂
(t)
β = G (β)−1 = ((αI )−1 + XTΛX )−1

where ỹ(β̂(t−1)) = X β̂(t−1) + Λ−1(y − η(βTX ))

• Combination of the MCMC and IWLS iteration schemes:

1. Initialization: β = β(0), t = 1

2. Sample βnew from N (β̂(t), Σ̂
(t)
β )

3. Accept it with probability α(β(t−1), βnew ) and set β(t) = βnew ;

otherwise, β(t) = β(t−1)

4. Do t := t + 1 and return to Step 2
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Auxiliary variable Gibbs sampler

Representation of BLR with auxiliary variables [Helmes and Hold, 2005]:

yi = sgn(zi )

zi = Xiβ + εi

εi ∼ N (0, λi )

λi = (2ψi )
2

ψi ∼ KS

β ∼ N (0, αI )

β|z ,λ ∼ N (B,V ) with B,V as in WLS, zi |β,Xi , yi , λi ∼ truncated

normal, λi |zi ,β sampled with rejection sampling

Block Gibbs sampler:

1. Update {z ,β} jointly given λ

2. Update λ|z ,β
9



Adaptive Metropolis-Hastings

Component-wise random symmetric walk

At iteration i for component k :

1. Sample β̃k
i+1 ∼ N (βk

i , σk)

2. Set βk
i+1 = β̃k

i+1 with probability p̃(β̃i+1)/p̃(βi )

3. Otherwise βk
i+1 = βk

i

Component-wise adaptive variance

Every 100 samples after burn-in:

• If currentAcceptanceRatek > γmax

σk = 1.2 ∗ σk
• Else if currentAcceptanceRatek < γmin

σk = 0.8 ∗ σk
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Results

Effective Sample Size (ESS)

ESS =
N

1 + 2
∑

k γ(k)

where N number of samples after burn-in, γ(k) autocorrelation of lag k

Ideally, ESS = N.

Trade-off time and quality: ratio time / min(ESS)
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Results

Averaged results: sampling experiments repeated 10 times

Method Time ESS (min, median, max) time / min(ESS)

Metropolis 10.4 (305.5, 653.6, 801) 0.034

Auxiliary variables 589.4 (710.6, 1199.4, 1715.2) 0.83

HMC 44.9 (3349, 3634, 4141) 0.0134

IWLS 17.9 (21.78, 96.34, 322.4) 0.83

RMHMC 164.1 (4865, 5000, 5000) 0.034

Table 1: Heart data set – comparison of sampling methods
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Results

(a) Adaptive MH (b) Auxiliary Gibbs (c) IWLS

(d) HMC (e) RMHMC

Figure 2: Autocorrelation plots: 1st covariate, 1000 samples of Heart data 13



Conclusion



Thank you for your attention !

Questions?
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