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Problem Statement



Problem Statement

Intractable density:
p(B) = B(B)/ | B(B)dB

Metropolis-Hastings:

e Define an ergodic Markov process with stationary distribution p(3).

e Transitions 3 — (3" proposed with density q(3*|3) accepted with
probability

o, BEaee)
o(B,B7) = {1’ ﬁ(ﬁ)q(ﬁ*lﬁ)}

What proposal distribution g ?
Typically, random walk: g(8*|8) = N (8*|3,A)

Low [[A]| High [|A]]
High acceptance rate Low acceptance rate

Highly correlated samples Not so many correlated samples 1



Hamiltonian Monte Carlo



Hamiltonian Monte Carlo (1)

Goal:
Make large transitions accepted with high probability.

How to:

e Independent auxiliary variable: p ~ A (p|0, M)

e Joint density: p(8,p) = p(B)p(p) = p(B)N(p|0, M)
e The negative joint log-probability is (with £(8) = log{p(8)})

H(3.p)= —L(B) +log{(2n)°|M} +2p"M 5 (1)
N | —

potential energy T —

where £(3) = log{p(3)}



Hamiltonian Monte Carlo (I1)

e Hamilton's equations:

d8 _oH _ 1 dp_ _OH

=5 =M = —2E = Vat(p) 2)

e Numerical integrator (Stormer-Verlet or leapfrog):

< T € T
P = P4 SVRL{AT} (3)
IBT+6 _ /87' +6M_1PT+% (4)
£ € T+€
PTT = T SVRL{BT) (5)

e Acceptance probability: min(1,exp{—H(B*, p*) + H(B,p)})

Hyperparameters:

o Step size € and number of integration steps: via acceptance rate

o Yet, choice of mass matrix M is critical.



Geometric concepts



Geometric concepts

Goal:
Automatically determine M at each step.

Fisher-Rao metric:

Distance between parametrized density functions

KL(p(y; B)|lp(y: B +6B)) ~ 8" G(B)s3

where G(8) = ~E, s | £ log (p(y|8)}

Fisher information matrix G(8) is p.d. metric defining a Riemann
manifold.

General metric tensor

With a Bayesian perspective:

G(B) = —E, 5 8%2 log{p(y, B)}



Riemann manifold Hamiltonian
Monte Carlo



Riemann manifold Hamiltonian Monte Carlo (1)

e The Hamiltonian is
H(B.p) = —L(8) + 5 log{2n)°|G(A)[} + 5pTG(B) ' (6)

e Marginal density:
p(8) x [ exol~H(B.p)}dp = exp(L(B)}

o Joint density: p(8, p) = p(B)p(p|B) = p(B)N (p|0, G(B))

e Hamilton's equations:

ds;  OH

=5 = GO ™)

dpj  OH _ 9L(B) 1 ~10G6(B)

I LG
0G(9)

G(B)'p (8)

1l T -1




Riemann manifold Hamiltonian Monte Carlo (I1)

Numerical integrator (generalized leapfrog):

p-,—+§ _ pT _ gVﬁH {IBT7PT+6/2} (9)
/67—+E _ ,BT + % [VPH {IBT’pTJr%} + va {,6T+E,PT+%}] (10)
P = pTE - SVH {7 T (11)

Acceptance probability:

min(1,exp{—H(B",p") + H(B,p)})



Application: Bayesian logistic
regression



Bayesian logistic regression (BLR)

Probabilistic model
e Likelihood:
ply =1|X) = n(X"p)
with n: x> (1+e )7t
e Prior: B~ N(0,al)

e Metric tensor:
G(B)=XTAX +a7 'l

with /\,‘7,‘ = 77(,6TX,,7;){1 - ﬂ(ﬁTXnT)}

X, (P H
N ﬂ o

Figure 1: DAG for the Bayesian logistic regression.



Iterative Weighted Least Squares (IWLS)

e MLE of BLR obtained with Newton-Raphson method:

BY = (o)™ + XTAX) (XTAF(BC )

36 =6(8) 7 = ((a) "+ XTAX)
where y(3(~1) = XA + A7} (y — (87 X))

e Combination of the MCMC and IWLS iteration schemes:
1. Initialization: 8= 8@, t=1
2. Sample Brew from /\/(B(t),fg))
3. Accept it with probability a(3¢™Y, Bhen) and set B = By ;

otherwise, 3 = gt=1)

4. Do t:=t+ 1 and return to Step 2



Auxiliary variable Gibbs sampler

Representation of BLR with auxiliary variables [Helmes and Hold, 2005]:

i = sgn(zi)
zi = XiB + €
ei ~N(0,\)
N = (i)
Y ~ KS

B~ N(0,al)

Blz, A ~ N(B, V) with B, V as in WLS, z]|8, Xi, yi, \i ~ truncated
normal, Aj|z;, 3 sampled with rejection sampling
Block Gibbs sampler:

1. Update {z, 3} jointly given A
2. Update Az, 8



Adaptive Metropolis-Hastings

Component-wise random symmetric walk
At iteration / for component k:

1. Sample B,ﬂl NN(B;(aO-k)

2. Set 5/k+1 = N;jrl with probability ﬁ(éiﬂ)/ﬁ(ﬁi)
3. Otherwise B,ﬁrl = Bk

Component-wise adaptive variance

Every 100 samples after burn-in:

o If currentAcceptanceRate* > ~max
o = 1.2% 0y

o Else if currentAcceptanceRateX < i
or = 0.8 % o
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Effective Sample Size (ESS)

N

ESS = ——————
14252 7(k)

where N number of samples after burn-in, (k) autocorrelation of lag k

deally, ESS = N.

Trade-off time and quality: ratio time / min(ESS)
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Averaged results: sampling experiments repeated 10 times

Method Time | ESS (min, median, max) | time / min(ESS)
Metropolis 10.4 | (305.5, 653.6, 801) 0.034

Auxiliary variables | 589.4 | (710.6, 1199.4, 1715.2) | 0.83

HMC 44.9 | (3349, 3634, 4141) 0.0134

IWLS 17.9 | (21.78, 96.34, 322.4) 0.83

RMHMC 164.1 | (4865, 5000, 5000) 0.034

Table 1: Heart data set — comparison of sampling methods
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(a) Adaptive MH (b) Auxiliary Gibbs (c) IWLS

(d) HMC (e) RMHMC

Figure 2: Autocorrelation plots: 1st covariate, 1000 samples of Heart data
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Conclusion



Thank you for your attention !

Questions?



